Palindromes and Orderings in Artin Groups

نویسندگان

  • FLORIAN DELOUP
  • F. DELOUP
چکیده

The braid group Bn, endowed with Artin’s presentation, admits two distinguished involutions. One is the anti-automorphism rev : Bn → Bn, v 7→ v̄, defined by reading braids in the reverse order (from right to left instead of left to right). Another one is the conjugation τ : x 7→ ∆x∆ by the generalized half-twist (Garside element). More generally, the involution rev is defined for all Artin groups (equipped with Artin’s presentation) and the involution τ is defined for all Artin groups of finite type. A palindrome is an element invariant under rev. We classify palindromes and palindromes invariant under τ in Artin groups of finite type. The tools are elementary rewriting and the construction of explicit left-orderings compatible with rev. Finally, we discuss generalizations to Artin groups of infinite type and Garside groups.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Encoding Valuations in Absolute Galois Groups Contents 1. Introduction 2 1.1 the Question 2 1.2 Notation 2 1.3 Main Results 2 1.3.1 Tamely Branching Henselian Elds 2 1.3.2 Abstract Decomposition Subgroups of G F

The paper develops an Artin-Schreier theory for valued elds: mutatis mutandis, valuations on any eld F are encoded in the absolute Galois group G F of F , just like orderings. We present a Galois characterization of henselian elds as well as a purely group theoretic characterization of decomposition subgroups of G F for arbitrary elds F. The approach is elementary and self-contained.

متن کامل

On Galois Groups over Pythagorean and Semi-real Closed Fields* by Ido Efrat

We call a field K semi-real closed if it is algebraically maximal with respect to a semi-ordering. It is proved that (as in the case of real closed fields) this is a Galois-theoretic property. We give a recursive description of all absolute Galois groups of semi-real closed fields of finite rank. I n t r o d u c t i o n By a well-known theorem of Artin and Schreier [AS], being a real closed fie...

متن کامل

Z/p metabelian birational p-adic section conjecture for varieties

In this manuscript we generalize the Z/p metabelian birational p-adic Section Conjecture for curves, as introduced and proved in Pop [P2], to all complete smooth varieties. As a consequence one gets a minimalistic p-adic analog of the famous Artin–Schreier theorem on the Galois characterization of the orderings of fields.

متن کامل

The Hurwitz Action and Braid Group Orderings

In connection with the so-called Hurwitz action of homeomorphisms in ramified covers we define a groupoid, which we call a ramification groupoid of the 2sphere, constructed as a certain path groupoid of the universal ramified cover of the 2-sphere with finitely many marked-points. Our approach to ramified covers is based on cosheaf spaces, which are closely related to Fox’s complete spreads. A ...

متن کامل

Strong exponent bounds for the local Rankin-Selberg convolution

Let $F$ be a non-Archimedean locally compact field‎. ‎Let $sigma$ and $tau$ be finite-dimensional representations of the Weil-Deligne group of $F$‎. ‎We give strong upper and lower bounds for the Artin and Swan exponents of $sigmaotimestau$ in terms of those of $sigma$ and $tau$‎. ‎We give a different lower bound in terms of $sigmaotimeschecksigma$ and $tauotimeschecktau$‎. ‎Using the Langlands...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005